A Particle Swarm Optimization –Based Heuristic for Scheduling in FMS Review
نویسندگان
چکیده
This paper focus on the problem of simultaneous scheduling of machine and automated guided vehicle (AGV) in a flexible manufacturing system (FMS) so as to minimize the makespan The FMS scheduling problem has been tackled by various traditional optimization techniques. While these methods can give an optimal solution to small-scale problems, different scheduling mechanisms are designed to generate optimum scheduling; these include non-traditional approaches such as genetic algorithm (GA), memetic algorithm (MA) and particle swarm algorithm (PSA) by considering multiple bjectives,i.e.,minimising the idle time of the machine andminimising the total penalty cost for not meeting the deadline concurrently. Two optimization algorithms ( genetic algorithm and particle swarm algorithm) are compared and conclusions are presented
منابع مشابه
A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملDiversified Particle Swarm Optimization for Hybrid Flowshop Scheduling
The aim of this paper is to propose a new particle swarm optimization algorithm to solve a hybrid flowshop scheduling with sequence-dependent setup times problem, which is of great importance in the industrial context. This algorithm is called diversified particle swarm optimization algorithm which is a generalization of particle swarm optimization algorithm and inspired by an anarchic society ...
متن کاملEnhanced Ant Colony Algorithm Hybrid with Particle Swarm Optimization for Grid Scheduling
This chapter proposes new heuristic algorithms to solve grid scheduling problem. Two heuristic algorithms, based on Ant Colony Optimization and Particle Swarm Optimization are proposed. The optimization criteria, namely, flowtime and makespan are used to measure the quality of grid scheduling algorithm. Using the simulated benchmark instances, the results of different algorithms are analyzed an...
متن کاملThe 2012 International Symposium on Semiconductor Manufacturing Intelligence
During the past several years, there have been a significant number of researches conducted in the area of semiconductor final test scheduling problems (SFTSP). As specific example of simultaneous multiple resources scheduling problem (SMRSP), intelligent manufacturing planning and scheduling based on meta-heuristic methods, such as Genetic Algorithm (GA), Simulated Annealing (SA), and Particle...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کامل